详解字符编码与 Unicode

人类交流使用 ABC 等字符,但计算机只认识 01。因此,就需要将人类的字符,转换成计算机认识的二进制编码。这个过程就是字符编码。
ASCII 最简单、常用的字符编码就是 ASCII(American Standard Code for Information Interchange,美国信息交换标准代码),它将美国人最常用的 26 个英文字符的大小写和常用的标点符号,编码成 0127 的数字。例如 A 映射成 65 (0x41),这样计算机中就可以用 0100 0001 这组二进制数据,来表示字母 A 了。
ASCII 编码的字符可以分成两类:

  • 控制字符:0 - 31127 (0x00 - 0x1F0x7F)
  • 可显示字符:32 - 126 (0x20 - 0x7E)
具体字符表可以参考:ASCII - 维基百科,自由的百科全书。
Unicode ASCII 只编码了美国常用的 128 个字符。显然不足以满足世界上这么多国家、这么多语言的字符使用。于是各个国家和地区,就都开始对自己需要的字符设计其他编码方案。例如,中国有自己的 GB2312,不够用了之后又扩展了 GBK,还是不够用,又有了 GB18030。欧洲有一系列的 ISO-8859 编码。这样各国人民就都可以在计算机上处理自己的语言文字了。
但每种编码方案,都只考虑了自己用到的字符,没办法跨服交流。如果一篇文档里,同时使用了多种语言的字符,总不能分别指定哪个字符使用了那种编码方式。
如果能统一给世界上的所有字符分配编码,就可以解决跨服交流的问题了,Unicode 就是来干这个事情的。
Unicode 统一编码了世界上大部分的字符,例如将 A 编码成 0x00A1,将 编码成 0x4E2D,将 α 编码成 0x03B1。这样,中国人、美国人、欧洲人,就可以使用同一种编码方式交流了。
一个 Unicode 字符可以使用 U+ 和 4 到 6 个十六进制数字来表示。例如 U+0041 表示字符 AU+4E2D 表示字符 U+03B1 表示字符 α
Unicode 最初编码的范围是 0x00000xFFFF,也就是两个字节,最多 65536 (2^16) 个字符。但随着编码的字符越来越多,两个字节的编码空间已经不够用,因此又引入了 16 个辅助平面,每个辅助平面同样最多包含 65536 个字符。原来的编码范围称为基本平面,也叫第 0 平面。
各平面的字符范围和名称如下表:
平面 字符范围 名称
0 号平面 U+0000 - U+FFFF 基本多文种平面 (Basic Multilingual Plane, BMP)
1 号平面 U+10000 - U+1FFFF 多文种补充平面 (Supplementary Multilingual Plane, SMP)
2 号平面 U+20000 - U+2FFFF 表意文字补充平面 (Supplementary Ideographic Plane, SIP)
3 号平面 U+30000 - U+3FFFF 表意文字第三平面 (Tertiary Ideographic Plane, TIP)
14 号平面 U+E0000 - U+EFFFF 特别用途补充平面
15 号平面 U+F0000 - U+FFFFF 保留作为私人使用区(A 区)(Private Use Area-A, PUA-A)
16 号平面 U+100000 - U+10FFFF 保留作为私人使用区(B 区)(Private Use Area-B, PUA-B)
每个平面内还会进一步划分成不同的区段。每个平面和区段具体说明参考 Unicode字符平面映射 - 维基百科,自由的百科全书;汉字相关的区段说明参考 中日韩统一表意文字 - 维基百科,自由的百科全书。Unicode 所有字符按平面和区段查找,可以参考 Roadmaps to Unicode;按区域和语言查找可以参考 Unicode Character Code Charts。
字符编码的基本概念 “字符编码”是一个模糊、笼统的概念,为了进一步说明字符编码的过程,需要将其拆解为一些更加明确的概念:
字符 (Character)
人类使用的字符。例如:
  • A
  • 等。
编码字符集 (Coded Character Set, CCS)
把一些字符的集合 (Character Set) 中的每个字符 (Character),映射成一个编号或坐标。例如:
  • 在 ASCII 中,把 A 编号为 65 (0x41);
  • 在 Unicode 中,把 编号为 0x4E2D
  • 在 GB2312 中,把 映射到第 54 区第 0 位。
这个映射的编号或坐标,叫做 Code Point。
Unicode 就是一个 CCS。
字符编码表 (Character Encoding Form, CEF)
把 Code Point 转换成特定长度的整型值的序列。这个特定长度的整型值叫做 Code Unit。例如:
  • 在 ASCII 中,0x41 这个 Code Point 会被转换成 0x41 这个 Code Unit;
  • 在 UTF-8 中,0x4E2D 这个 Code Point 会被转换成 0xE4 B8 AD 这三个 Code Unit 的序列。
我们常用的 UTF-8、UTF-16 等,就是 CEF。
字符编码方案 (Character Encoding Scheme, CES)
【详解字符编码与 Unicode】把 Code Unit 序列转换成字节序列(也就是最终编码后的二进制数据,供计算机使用)。例如 :
  • 0x0041 这个 Code Unit,使用大端序会转换成 0x00 41 两个字节;
  • 使用小端序会转换成 0x41 00 两个字节。
UTF-16 BE、UTF-32 LE 等,就是 CES。
这些概念间的关系如下:
详解字符编码与 Unicode
文章图片

因此,我们说 ASCII 是“字符编码”时,“字符编码”指的是上面从 Character 到字节数组的整个过程。因为 ASCII 足够简单,中间的 Code Point 到 Code Unit,再到字节数组,都是一样的,没必要拆开说。
而我们说 Unicode 是“字符编码”时,“字符编码”其实指的仅是上面的 CCS 部分。
同理,ASCII、Unicode、UTF-8、UTF-16、UTF-16 LE,都可以笼统的叫做“字符编码”,但每个“字符编码”表示的含义都是不同的。可能是 CCS、CEF、CES,也可能是整个过程。
Unicode 转换格式 Unicode 只是把字符映射成了 Code Point (字符编码表,CCS)。将 Code Point 转换成 Code Unit 序列(字符编码表,CEF),再最终将 Code Unit 序列转换成字节序列(字符编码方案,CES),有多种不同的实现方式。这些实现方式叫做 Unicode 转换格式 (Unicode Transformation Format, UTF)。主要包括:
  • UTF-32
  • UTF-16
  • UTF-8
UTF-32
UTF-32 将每个 Unicode Code Point 转换成 1 个 32 位长的 Code Unit。
UTF-32 是固定长度的编码方案,每个 Code Unit 的值就是其 Code Point 的值。例如 0x00 00 00 41 这个 Code Unit,就表示了 0x0041 这个 Code Point。
UTF-32 的一个 Code Unit,需要转换成 4 个字节的序列。因此,有大端序 (UTF-32 BE) 和小端序 (UTF-32 LE) 两种转换方式。
例如 0x00 00 00 41 这个 Code Unit,使用 UTF-32 BE 最终会编码为 0x00 00 00 41;使用 UTF-32 LE 最终会编码为 0x41 00 00 00
UTF-16
UTF-16 将每个 Unicode Code Point 转换成 1 到 2 个 16 位长的 Code Unit。
对于基本平面的 Code Point(0x00000xFFFF),每个 Code Point 转换成 1 个 Code Unit,Code Unit 的值就是其对应 Code Point 的值。例如 0x0041 这个 Code Unit,就表示了 0x0041 这个 Code Point。
对于辅助平面的 Code Point(0x0100000x10FFFF),每个 Code Point 转换成 2 个 Code Unit 的序列。如果还是直接使用 Code Point 数值转换成 Code Unit,就有可能和基本平面的编码重叠。例如 U+010041 如果转换成 0x00010x0041 这两个 Code Unit,解码的时候没办法知道这是 U+010041 一个字符,还是 U+0001U+0041 两个字符。
为了让辅助平面编码的两个 Code Unit,都不与基本平面编码的 Code Unit 重叠,就需要利用基本平面中一个特殊的区段了。基本平面中规定了从 0xD8000xDFFF 之间的区段,是永久保留不映射任何字符的。UTF-16 将辅助平面的 Code Point,编码成一对在这个范围内的 Code Unit,叫做代理对。这样解码的时候,如果解析到某个 Code Unit 在 0xD8000xDFFF 范围内,就知道他不是基本平面的 Code Unit,而是要两个 Code Unit 组合在一起去表示 Code Point。
具体转换方式是:
  1. 将辅助平面的 Code Point 的值 (0x010000 - 0x10FFFF),减去 0x010000,得到 0x000000xFFFFF 范围内的一个数值,也就是最多 20 个比特位的数值
  2. 将前 10 位的值(范围在 0x00000x03FF),加上 0xD800,得到范围在 0xD8000xDBFF 的一个值,作为第一个 Code Unit,称作高位代理或前导代理
  3. 将后 10 位的值(范围在 0x00000x03FF),加上 0xDC00,得到范围在 0xDC000xDFFF 的一个只,作为第二个 Code Unit,称作低位代理或后尾代理
基本平面中的 0xD800 - 0xDBFF0xDC00 - 0xDFFF 这两个区段,也分别叫做 UTF-16 高半区 (High-half zone of UTF-16) 和 UTF-16 低半区 (Low-half zone of UTF-16)。
UTF-16 的一个 Code Unit,需要转换成 2 个字节的序列。因此,有大端序 (UTF-16 BE) 和小端序 (UTF-16 LE) 两种转换方式。
例如 0x0041 这个 Code Unit,使用 UTF-16 BE 最终会编码为 0x0041;使用 UTF-16 LE 最终会编码为 0x4100
UTF-8
UTF-8 将每个 Unicode Code Point 转换成 1 到 4 个 8 位长的 Code Unit。
UTF-8 是不定长的编码方案,使用前缀来标识 Code Unit 序列的长度。解码时,根据前缀,就知道该将哪几个 Code Unit 组合在一起解析成一个 Code Point 了。
具体编码方式是:
Code Point 范围 Code Unit 个数 每个 Code Unit 前缀 示例 Code Point 示例 Code Unit 序列
7 位以内 (0 - 0xEF) 1 0b0 0b0zzz zzzz 0b0zzz zzzz
8 到 11 位 (0x80 - 0x07FF) 2 第一个 0b110,剩下的 0b10 0b0yyy yyzz zzzz 0b110y yyyy 10zz zzzz
12 到 16 位 (0x0800 - 0xFFFF) 3 第一个 0b1110,剩下的 0b10 0bxxxx yyyy yyzz zzzz 0b1110 xxxx 10yy yyyy 10zz zzzz
17 到 21 位 (0x10000 - 10FFFF) 4 第一个 0b11110,剩下的 0b10 0b000w wwxx xxxx yyyy yyzz zzzz 0b1111 0www 10xx xxxx 10yy yyyy 10zz zzzz
解码时,拿到每个 Code Unit 的前缀,就知道这是对应第几个 Code Unit:
  • 前缀是 0b0,说明这个 Code Point 是一个 Code Unit 组成
  • 前缀是 0b110,说明这个 Code Point 是两个 Code Unit 组成,后面还会有 1 个 0b10 前缀的 Code Unit
  • 前缀是 0b1110,说明这个 Code Point 是三个 Code Unit 组成,后面还会有 2 个 0b10 前缀的 Code Unit
  • 前缀是 0b11110,说明这个 Code Point 是四个 Code Unit 组成,后面还会有 3 个 0b10 前缀的 Code Unit
UTF-8 的一个 Code Unit,刚好转换成 1 个字节,因此不需要考虑字节序。
参考上表,对于 ASCII 范围内的字符,使用 ASCII 和 UTF-8 编码的结果是一样的。所以 UTF-8 是 ASCII 的超集,使用 ASCII 编码的字节流也可以使用 UTF-8 解码。
UTF-8 与 UTF-16 对比
Code Point 范围 UTF-8 编码长度 UTF-16 编码长度
7 位以内 (0x00 - 0xEF) 1 2
8 到 11 位 (0x0080 - 0x07FF) 2 2
12 到 16 位 (0x0800 - 0xFFFF) 3 2
17 到 21 位 (0x10000 - 10FFFF) 4 4
可以看出只有在 0x000xEF 范围的字符,UTF-8 编码比 UTF-16 短;而在 0x0800 - 0xFFFF 范围内,UTF-8 编码是比 UTF-16 长的。
而中文主要在 0x4E000x9FFF,如果写一篇文档,全都是中文,一个英文字母和符号都没有。那使用 UTF-8 编码,可能比 UTF-16 编码还要多占用一半的空间。
相关文章:
  • Unicode 标准化
  • Unicode 与编程语言
  • 字节顺序标记
  • 字节序
  • Unicode 与 UCS

    推荐阅读