Java架构专栏|Kafka 一文读懂

第一、Kafka 简介 Kafka是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用于大数据实时处理领域。
消息队列应用场景 Java架构专栏|Kafka 一文读懂
文章图片

消息队列优点

  • 解耦
  • 可恢复性
  • 缓冲
  • 灵活性 & 峰值处理能力
  • 异步通信
消息队列模式 点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到Queue中,然后消息消费者从Queue中取出并且消费消息。消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息。Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
Java架构专栏|Kafka 一文读懂
文章图片

发布/订阅模式(一对多,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
Java架构专栏|Kafka 一文读懂
文章图片

Kafka 基础架构和概念 Java架构专栏|Kafka 一文读懂
文章图片

  • Producer :消息生产者,就是向kafka broker发消息的客户端;
  • Consumer :消息消费者,向kafka broker取消息的客户端;
  • Consumer Group (CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
  • Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
  • Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic;
  • Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列;
  • Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower。
  • leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader。
  • follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的leader。
第二、Kafka 快速入门 Docker 安装Kafka 请参考:Docker 安装Kafka
Kafka 指令操作 温馨提示:本章节全部的操作是在docker 安装Kafka 环境下进行的操作。
[root@localhost ~]# docker exec -it 06a66409d7ce /bin/sh# 进入Kafka 容器后端 / # cd /opt/kafka_2.13-2.8.1/bin# 进入Kafka bin 目录 /opt/kafka_2.13-2.8.1/bin # ls -a# 查看Kafka 支持指令 .kafka-mirror-maker.sh ..kafka-preferred-replica-election.sh connect-distributed.shkafka-producer-perf-test.sh connect-mirror-maker.shkafka-reassign-partitions.sh connect-standalone.shkafka-replica-verification.sh kafka-acls.shkafka-run-class.sh kafka-broker-api-versions.shkafka-server-start.sh kafka-cluster.shkafka-server-stop.sh kafka-configs.shkafka-storage.sh kafka-console-consumer.shkafka-streams-application-reset.sh kafka-console-producer.shkafka-topics.sh kafka-consumer-groups.shkafka-verifiable-consumer.sh kafka-consumer-perf-test.shkafka-verifiable-producer.sh kafka-delegation-tokens.shtrogdor.sh kafka-delete-records.shwindows kafka-dump-log.shzookeeper-security-migration.sh kafka-features.shzookeeper-server-start.sh kafka-leader-election.shzookeeper-server-stop.sh kafka-log-dirs.shzookeeper-shell.sh kafka-metadata-shell.sh

1、查看当前服务器中的所有topic
kafka-topics.sh --zookeeper 192.168.43.10:2181 --list
/opt/kafka_2.13-2.8.1/bin # kafka-topics.sh --zookeeper 192.168.43.10:2181 --lis t mykafka

2、创建topic
kafka-topics.sh --zookeeper 192.168.43.10:2181 --create --replication-factor 1 --partitions 1 --topic first
/opt/kafka_2.13-2.8.1/bin # kafka-topics.sh --zookeeper 192.168.43.10:2181 --cre ate --replication-factor 1 --partitions 1 --topic first Created topic first.

3、删除topic
kafka-topics.sh --zookeeper 192.168.43.10:2181 --delete --topic first
/opt/kafka_2.13-2.8.1/bin # kafka-topics.sh --zookeeper 192.168.43.10:2181 --del ete --topic first Topic first is marked for deletion. Note: This will have no impact if delete.topic.enable is not set to true.

4、发送消息
kafka-console-producer.sh --broker-list 192.168.43.10:9092 --topic first
/opt/kafka_2.13-2.8.1/bin # kafka-console-producer.sh --broker-list 192.168.43.1 0:9092 --topic first >Hello

温馨提示:Ctrl + C 退出消息生产者控制台
5、消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.43.10:9092 --topic first
/opt/kafka_2.13-2.8.1/bin # kafka-console-consumer.sh --bootstrap-server 192.168 .43.10:9092 --topic first

6、查看某个topic的详情
kafka-topics.sh --zookeeper 192.168.43.10:2181 --describe –-topic first
/opt/kafka_2.13-2.8.1/bin # kafka-topics.sh --zookeeper 192.168.43.10:2181 --d escribe –-topic first Topic: __consumer_offsetsTopicId: f59s-dtdTLmUMQaCQiWOJg PartitionCount: 50ReplicationFactor: 1Configs: compression.type=producer,cleanup.policy=compact,segment.bytes=104857600 Topic: __consumer_offsetsPartition: 0Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 1Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 2Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 3Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 4Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 5Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 6Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 7Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 8Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 9Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 10Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 11Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 12Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 13Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 14Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 15Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 16Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 17Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 18Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 19Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 20Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 21Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 22Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 23Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 24Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 25Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 26Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 27Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 28Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 29Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 30Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 31Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 32Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 33Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 34Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 35Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 36Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 37Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 38Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 39Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 40Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 41Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 42Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 43Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 44Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 45Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 46Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 47Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 48Leader: 0Replicas: 0Isr: 0 Topic: __consumer_offsetsPartition: 49Leader: 0Replicas: 0Isr: 0 Topic: firstTopicId: HWeVjvVwRUSvK1zilceuvA PartitionCount: 1ReplicationFactor: 1Configs: Topic: firstPartition: 0Leader: 0Replicas: 0Isr: 0 Topic: mykafkaTopicId: T5XvnQAGS4uToZfCJJLlpA PartitionCount: 1ReplicationFactor: 1Configs: Topic: mykafkaPartition: 0Leader: 0Replicas: 0Isr: 0

第三、Kafka架构 Kafka工作流程及其文件存储机制 Java架构专栏|Kafka 一文读懂
文章图片
Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。
topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。
Java架构专栏|Kafka 一文读懂
文章图片

由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。
Java架构专栏|Kafka 一文读懂
文章图片

index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。
Java架构专栏|Kafka 一文读懂
文章图片


“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。
Kafka生产者 分区策略
分区原因
(1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
(2)可以提高并发,因为可以以Partition为单位读写了。
分区原则
需要将producer发送的数据封装成一个ProducerRecord对象。
Java架构专栏|Kafka 一文读懂
文章图片

(1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
(2) 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
(3)既没有 partition 值又没有 key 值的情况下, kafka采用Sticky Partition(黏性分区器),会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,kafka再随机一个分区进行使用.
数据可靠性保证
生产者发送数据到topic partition的可靠性保证
为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。
Java架构专栏|Kafka 一文读懂
文章图片

Topic partition存储数据的可靠性保证
副本数据同步策略对比
方案
优点
缺点
半数以上完成同步,就发送ack
延迟低
选举新的leader时,容忍n台节点的故障,需要2n+1个副本
全部完成同步,才发送ack
选举新的leader时,容忍n台节点的故障,需要n+1个副本
延迟高
Kafka选择了第二种方案,原因如下:
1. 同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
2. 虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。
ISR
采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?
Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给producer发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。
ack应答级别
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。
所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。
acks参数配置:
acks:
0:这一操作提供了一个最低的延迟,partition的leader接收到消息还没有写入磁盘就已经返回ack,当leader故障时有可能丢失数据;
1: partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;
Java架构专栏|Kafka 一文读懂
文章图片

-1(all): partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。
Java架构专栏|Kafka 一文读懂
文章图片

leader和 follower故障处理细节
Java架构专栏|Kafka 一文读懂
文章图片

LEO:指的是每个副本最大的offset;
HW:指的是消费者能见到的最大的offset,ISR队列中最小的LEO。
(1)follower故障
follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
(2)leader故障
leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
Exactly Once语义
将服务器的ACK级别设置为-1,可以保证Producer到Server之间不会丢失数据,即At Least Once语义。相对的,将服务器ACK级别设置为0,可以保证生产者每条消息只会被发送一次,即At Most Once语义。
At Least Once可以保证数据不丢失,但是不能保证数据不重复;相对的,At Least Once可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即Exactly Once语义。在0.11版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
0.11版本的Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指Producer不论向Server发送多少次重复数据,Server端都只会持久化一条。幂等性结合At Least Once语义,就构成了Kafka的Exactly Once语义。即:At Least Once + 幂等性 = Exactly Once
要启用幂等性,只需要将Producer的参数中enable.idempotence设置为true即可。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的Producer在初始化的时候会被分配一个PID,发往同一Partition的消息会附带Sequence Number。而Broker端会对做缓存,当具有相同主键的消息提交时,Broker只会持久化一条。但是PID重启就会变化,同时不同的Partition也具有不同主键,所以幂等性无法保证跨分区跨会话的Exactly Once。
Kafka 消费者 消费方式
consumer采用pull(拉)模式从broker中读取数据。
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。
pull模式不足之处是,如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。
分区分配策略
一个consumer group中有多个consumer,一个 topic有多个partition,所以必然会涉及到partition的分配问题,即确定那个partition由哪个consumer来消费。
Kafka有三种分配策略,RoundRobin,Range , Sticky。
分区分配策略之RoundRobin(轮训)
分区分配策略之Range(范围)
分区分配策略之Sticky(标记)
offset维护
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
Kafka 0.9版本之前,consumer默认将offset保存在Zookeeper中,从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。
Kafka 高效读写数据 顺序写磁盘
Kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到600M/s,而随机写只有100K/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。
持久化应用
Kafka数据持久化是直接持久化到Pagecache中,这样会产生以下几个好处:
  • I/O Scheduler 会将连续的小块写组装成大块的物理写从而提高性能
  • I/O Scheduler 会尝试将一些写操作重新按顺序排好,从而减少磁盘头的移动时间
  • 充分利用所有空闲内存(非 JVM 内存)。如果使用应用层 Cache(即 JVM 堆内存),会增加 GC 负担
  • 读操作可直接在 Page Cache 内进行。如果消费和生产速度相当,甚至不需要通过物理磁盘(直接通过 Page Cache)交换数据
  • 如果进程重启,JVM 内的 Cache 会失效,但 Page Cache 仍然可用
尽管持久化到Pagecache上可能会造成宕机丢失数据的情况,但这可以被Kafka的Replication机制解决。如果为了保证这种情况下数据不丢失而强制将 Page Cache 中的数据 Flush 到磁盘,反而会降低性能。
零拷贝
Java架构专栏|Kafka 一文读懂
文章图片

ZooKeeper在Kafka 的作用 Kafka集群中有一个broker会被选举为Controller,负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。
Controller的管理工作都是依赖于Zookeeper的。
以下为partition的leader选举过程:
Java架构专栏|Kafka 一文读懂
文章图片

Kafka 事务Kafka从0.11版本开始引入了事务支持。事务可以保证Kafka在Exactly Once语义的基础上,生产和消费可以跨分区和会话,要么`全部成功,要么全部失败。
生产者事务
为了实现跨分区跨会话的事务,需要引入一个全局唯一的Transaction ID,并将Producer获得的PID和Transaction ID绑定。这样当Producer重启后就可以通过正在进行的Transaction ID获得原来的PID。
为了管理Transaction,Kafka引入了一个新的组件Transaction Coordinator。Producer就是通过和Transaction Coordinator交互获得Transaction ID对应的任务状态。Transaction Coordinator还负责将事务所有写入Kafka的一个内部Topic,这样即使整个服务重启,由于事务状态得到保存,进行中的事务状态可以得到恢复,从而继续进行。
消费者事务
上述事务机制主要是从Producer方面考虑,对于Consumer而言,事务的保证就会相对较弱,尤其时无法保证Commit的信息被精确消费。这是由于Consumer可以通过offset访问任意信息,而且不同的Segment File生命周期不同,同一事务的消息可能会出现重启后被删除的情况。
如果想完成Consumer端的精准一次性消费,那么需要kafka消费端将消费过程和提交offset过程做原子绑定。此时我们需要将kafka的offset保存到支持事务的自定义介质(比如mysql)。这部分知识会在后续项目部分涉及。
Kafka API开发 生产者发送消息核心流程
Kafka的Producer发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程——main线程和Sender线程,以及一个线程共享变量——RecordAccumulator。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka broker。
Java架构专栏|Kafka 一文读懂
文章图片

相关参数:
batch.size:只有数据积累到batch.size之后,sender才会发送数据。
linger.ms:如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。
前提:在Kafka 创建Topic名称为"first"
Kafka API 之异步发送
第一步:添加Kafka 相关Jar 包依赖
org.apache.kafka kafka-clients 2.4.1

第二步:核心类说明
KafkaProducer:需要创建一个生产者对象,用来发送数据
ProducerConfig:获取所需的一系列配置参数
ProducerRecord:每条数据都要封装成一个ProducerRecord对象
第三步:测试功能代码
package com.zzg.kafka; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProduce { public static void main(String[] args) { Properties props = new Properties(); //kafka集群,broker-list props.put("bootstrap.servers", "192.168.43.10:9092"); props.put("acks", "all"); //重试次数 props.put("retries", 1); //批次大小 props.put("batch.size", 16384); //等待时间 props.put("linger.ms", 1); //RecordAccumulator缓冲区大小 props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord("first", Integer.toString(i), Integer.toString(i))); }producer.close(); } }

Kafka API 之回调函数
第一步:与上类同
第二步:与上类同
第三步:测试功能代码
回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是RecordMetadata和Exception,如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
package com.zzg.kafka; import org.apache.kafka.clients.producer.*; import java.util.Properties; public class KafkaProduceCallBack { public static void main(String[] args) { Properties props = new Properties(); //kafka集群,broker-list props.put("bootstrap.servers", "192.168.43.10:9092"); props.put("acks", "all"); //重试次数 props.put("retries", 1); //批次大小 props.put("batch.size", 16384); //等待时间 props.put("linger.ms", 1); //RecordAccumulator缓冲区大小 props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord("first", Integer.toString(i), Integer.toString(i)), new Callback() {//回调函数,该方法会在Producer收到ack时调用,为异步调用 @Override public void onCompletion(RecordMetadata metadata, Exception exception) { if (exception == null) { System.out.println("success->" + metadata.offset()); } else { exception.printStackTrace(); } } }); }producer.close(); } }

Kafka API 之分发器
  1. 默认的分区器 DefaultPartitioner
  2. 自定义分区器
package com.zzg.kafka; import org.apache.kafka.clients.producer.Partitioner; import org.apache.kafka.common.Cluster; import java.util.Map; public class MyPartitioner implements Partitioner { /** * 计算某条消息要发送到哪个分区 * * @param topic主题 * @param key消息的key * @param keyBytes消息的key序列化后的字节数组 * @param value消息的value * @param valueBytes 消息的value序列化后的字节数组 * @param cluster * @return 需求: 以first主题为例,2个分区 * 消息的 value包含"atguigu"的 进入0号分区 * 其他的消息进入1号分区 */ @Override public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { String msgValue = https://www.it610.com/article/value.toString(); int partition; if (msgValue.contains("atguigu")) { partition = 0; } else { partition = 1; } return partition; }/** * 收尾工作 */ @Override public void close() {}/** * 读取配置的 * @param configs */ @Override public void configure(Map configs) {} }

Kafka API 之同步发送
同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回ack。
由于send方法返回的是一个Future对象,根据Futrue对象的特点,我们也可以实现同步发送的效果,只需在调用Future对象的get方发即可。
package com.zzg.kafka; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; import java.util.concurrent.ExecutionException; public class KafkaProduceSync { public static void main(String[] args) throws ExecutionException, InterruptedException { Properties props = new Properties(); props.put("bootstrap.servers", "192.168.43.10:9092"); //kafka集群,broker-listprops.put("acks", "all"); props.put("retries", 1); //重试次数props.put("batch.size", 16384); //批次大小props.put("linger.ms", 1); //等待时间props.put("buffer.memory", 33554432); //RecordAccumulator缓冲区大小props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { Object result = producer.send(new ProducerRecord("first", Integer.toString(i), Integer.toString(i))).get(); System.out.println("success->" + String.valueOf(result)); } producer.close(); } }

消费者消费消息核心说明
Consumer消费数据时的可靠性是很容易保证的,因为数据在Kafka中是持久化的,故不用担心数据丢失问题。
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
所以offset的维护是Consumer消费数据是必须考虑的问题。
Kafka API之自动提交offset
核心类说明:
KafkaConsumer:需要创建一个消费者对象,用来消费数据
ConsumerConfig:获取所需的一系列配置参数
ConsuemrRecord:每条数据都要封装成一个ConsumerRecord对象
为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。
自动提交offset的相关参数:
enable.auto.commit:是否开启自动提交offset功能
auto.commit.interval.ms:自动提交offset的时间间隔
package com.zzg.kafka.comsumer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays; import java.util.Properties; public class KafkaComsumer { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "192.168.43.10:9092"); props.put("group.id", "test"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("first")); while (true) {ConsumerRecords records = consumer.poll(100); for (ConsumerRecord record : records)System.out.printf("offset = %d, key = %s, value = https://www.it610.com/article/%s%n", record.offset(), record.key(), record.value()); } } }

Kafka API之重置Offset
auto.offset.rest = earliest | latest | none |
Kafka API之手动提交offset
自动提交offset十分简介便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因此Kafka还提供了手动提交offset的API。
手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次poll的一批数据最高的偏移量提交;不同点是,commitSync阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而commitAsync则没有失败重试机制,故有可能提交失败。
1)同步提交offset
由于同步提交offset有失败重试机制,故更加可靠。
package com.zzg.kafka.comsumer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays; import java.util.Properties; public class KafkaManualComsumer { public static void main(String[] args) { Properties props = new Properties(); //Kafka集群 props.put("bootstrap.servers", "192.168.43.10:9092"); //消费者组,只要group.id相同,就属于同一个消费者组 props.put("group.id", "test"); props.put("enable.auto.commit", "false"); //关闭自动提交offsetprops.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("first")); //消费者订阅主题while (true) {//消费者拉取数据 ConsumerRecords records = consumer.poll(100); for (ConsumerRecord record : records) {System.out.printf("offset = %d, key = %s, value = https://www.it610.com/article/%s%n", record.offset(), record.key(), record.value()); }//同步提交,当前线程会阻塞直到offset提交成功 consumer.commitSync(); } } }

2)异步提交offset
同步提交offset更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会收到很大的影响。因此更多的情况下,会选用异步提交offset的方式。
package com.zzg.kafka.comsumer; import org.apache.kafka.clients.consumer.*; import org.apache.kafka.common.TopicPartition; import java.util.Arrays; import java.util.Map; import java.util.Properties; public class KafkaSyncComsumer { public static void main(String[] args) { Properties props = new Properties(); //Kafka集群 props.put("bootstrap.servers", "192.168.43.10:9092"); //消费者组,只要group.id相同,就属于同一个消费者组 props.put("group.id", "test"); //关闭自动提交offset props.put("enable.auto.commit", "false"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("first")); //消费者订阅主题while (true) { ConsumerRecords records = consumer.poll(100); //消费者拉取数据 for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = https://www.it610.com/article/%s%n", record.offset(), record.key(), record.value()); }//异步提交 consumer.commitAsync(new OffsetCommitCallback() { @Override public void onComplete(Map offsets, Exception exception) { if (exception != null) { System.err.println("Commit failed for" + offsets); } } }); } } }

  1. 数据漏消费和重复消费分析
无论是同步提交还是异步提交offset,都有可能会造成数据的漏消费或者重复消费。先提交offset后消费,有可能造成数据的漏消费;而先消费后提交offset,有可能会造成数据的重复消费。
自定义Interceptor 拦截器原理
Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
(1)configure(configs)
获取配置信息和初始化数据时调用。
(2)onSend(ProducerRecord):
该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算。
(3)onAcknowledgement(RecordMetadata, Exception):
该方法会在消息从RecordAccumulator成功发送到Kafka Broker之后,或者在发送过程中失败时调用。并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率。
(4)close:
关闭interceptor,主要用于执行一些资源清理工作
如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。
拦截器案例
1)需求:
实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。
2)案例实操

(1)增加时间戳拦截器
package com.zzg.kafka.interceptor; import org.apache.kafka.clients.producer.ProducerInterceptor; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.clients.producer.RecordMetadata; import java.util.Map; public class TimeInterceptor implements ProducerInterceptor { @Override public void configure(Map configs) {}@Override public ProducerRecord onSend(ProducerRecord record) {// 创建一个新的record,把时间戳写入消息体的最前部 return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(), System.currentTimeMillis() + "," + record.value().toString()); }@Override public void onAcknowledgement(RecordMetadata metadata, Exception exception) {}@Override public void close() {} }

(2)统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器
package com.zzg.kafka.interceptor; import org.apache.kafka.clients.producer.ProducerInterceptor; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.clients.producer.RecordMetadata; import java.util.Map; public class CounterInterceptor implements ProducerInterceptor { private int errorCounter = 0; private int successCounter = 0; @Override public void configure(Map configs) {}@Override public ProducerRecord onSend(ProducerRecord record) { return record; }@Override public void onAcknowledgement(RecordMetadata metadata, Exception exception) { // 统计成功和失败的次数 if (exception == null) { successCounter++; } else { errorCounter++; } }@Override public void close() { // 保存结果 System.out.println("Successful sent: " + successCounter); System.out.println("Failed sent: " + errorCounter); } }

(3)producer主程序
package com.zzg.kafka; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.ArrayList; import java.util.List; import java.util.Properties; public class KafkaInterceptorProduce { public static void main(String[] args) { // 1 设置配置信息 Properties props = new Properties(); props.put("bootstrap.servers", "192.168.43.10:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 2 构建拦截链 List interceptors = new ArrayList<>(); interceptors.add("com.zzg.kafka.interceptor.TimeInterceptor"); interceptors.add("com.zzg.kafka.interceptor.CounterInterceptor"); props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors); String topic = "first"; Producer producer = new KafkaProducer<>(props); // 3 发送消息 for (int i = 0; i < 10; i++) {ProducerRecord record = new ProducerRecord<>(topic, "message" + i); producer.send(record); }// 4 一定要关闭producer,这样才会调用interceptor的close方法 producer.close(); } }

(4)comsumer主程序
package com.zzg.kafka.comsumer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays; import java.util.Properties; public class KafkaComsumer { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "192.168.43.10:9092"); props.put("group.id", "test"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("first")); while (true) {ConsumerRecords records = consumer.poll(100); for (ConsumerRecord record : records)System.out.printf("offset = %d, key = %s, value = https://www.it610.com/article/%s%n", record.offset(), record.key(), record.value()); } } }

第三、Kafka 监控 1)修改kafka启动命令
修改kafka-server-start.sh命令中
if [ "x$KAFKA_HEAP_OPTS" = "x" ]; then
export KAFKA_HEAP_OPTS="-Xmx1G -Xms1G"
fi

if [ "x$KAFKA_HEAP_OPTS" = "x" ]; then
export KAFKA_HEAP_OPTS="-server -Xms2G -Xmx2G -XX:PermSize=128m -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:ParallelGCThreads=8 -XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70"
export JMX_PORT="9999"
#export KAFKA_HEAP_OPTS="-Xmx1G -Xms1G"
fi
注意:修改之后在启动Kafka之前要分发之其他节点

2)上传压缩包kafka-eagle-bin-1.4.5.tar.gz到集群/opt/software目录
3)解压到本地
[atguigu@hadoop102 software]$ tar -zxvf kafka-eagle-bin-1.4.5.tar.gz

4)进入刚才解压的目录
[atguigu@hadoop102 kafka-eagle-bin-1.4.5]$ ll
总用量 82932
-rw-rw-r--. 1 atguigu atguigu 84920710 8月13 23:00 kafka-eagle-web-1.4.5-bin.tar.gz

5)将kafka-eagle-web-1.3.7-bin.tar.gz解压至/opt/module
[atguigu@hadoop102 kafka-eagle-bin-1.4.5]$ tar -zxvf kafka-eagle-web-1.4.5-bin.tar.gz -C /opt/module/

6)修改名称
[atguigu@hadoop102 module]$ mv kafka-eagle-web-1.4.5/ eagle

7)给启动文件执行权限
[atguigu@hadoop102 eagle]$ cd bin/
[atguigu@hadoop102 bin]$ ll
总用量 12
-rw-r--r--. 1 atguigu atguigu 1848 8月22 2017 ke.bat
-rw-r--r--. 1 atguigu atguigu 7190 7月30 20:12 ke.sh
[atguigu@hadoop102 bin]$ chmod 777 ke.sh

8)修改配置文件 conf/system-config.properties
######################################
# multi zookeeper&kafka cluster list
######################################
kafka.eagle.zk.cluster.alias=cluster1
cluster1.zk.list=hadoop102:2181,hadoop103:2181,hadoop104:2181

######################################
# kafka offset storage
######################################
cluster1.kafka.eagle.offset.storage=kafka

######################################
# enable kafka metrics
######################################
kafka.eagle.metrics.charts=true
kafka.eagle.sql.fix.error=false

######################################
# kafka jdbc driver address
######################################
kafka.eagle.driver=com.mysql.jdbc.Driver
kafka.eagle.url=jdbc:mysql://hadoop102:3306/ke?useUnicode=true&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull
kafka.eagle.username=root
kafka.eagle.password=123456

9)添加环境变量
export KE_HOME=/opt/module/eagle
export PATH=$PATH:$KE_HOME/bin
注意:source /etc/profile

10)启动
[atguigu@hadoop102 eagle]$ bin/ke.sh start
... ...
... ...
*******************************************************************
* Kafka Eagle Service has started success.
* Welcome, Now you can visit 'http://192.168.202.102:8048/ke'
* Account:admin ,Password:123456
*******************************************************************
* ke.sh [start|status|stop|restart|stats]
* https://www.kafka-eagle.org/
*******************************************************************
[atguigu@hadoop102 eagle]$
注意:启动之前需要先启动ZK以及KAFKA

11)登录页面查看监控数据
http://192.168.202.102:8048/ke
第四、SpringBoot集成Kafka
【Java架构专栏|Kafka 一文读懂】请参考文章:SpringBoot 集成Kafka

    推荐阅读