集合代数

本文概述

  • 二元性
  • 延伸原理
  • 两套笛卡尔积
在并集, 交集和补码运算下的集合满足表1中列出的各种定律(标识)。
表:集合代数定律
等幂律 (a)A∪A = A (b)A∩A = A
关联法 (a)(A∪B)∪C = A∪(B∪C) (b)(A∩B)∩C = A∩(B∩C)
交换律 (a)A∪B = B∪A (b)A∩B = B∩A
Distributive Laws (a)A∪(B∩C)=(A∩B)∩(A∪C) (b)A∩(B∪C)=(A∪B)∪(A∩C)
De Morgan’ s Laws (a)(A∪B)c =Ac∩Bc (b)(A∩B)c =Ac∪Bc
Identity Laws (a)A = A(b)A = U (c)U = A(d)A = =
补充法 (a)A∪Ac = U(b)A∩Ac =? (c)Uc =?(d)?c= U
Involution Law (a)(Ac)c = A
表1给出了集合的代数定律。
示例1:证明幂等定律:
(a) A ∪ A = A

解:
Since, B ? A ∪ B, therefore A ? A ∪ ALetx ∈ A ∪ A ? x ∈ Aorx ∈ A ?x ∈ A∴ A ∪ A ? AAsA ∪ A ? A andA ? A ∪ A ? A =A ∪ A. Hence Proved.

(b) A ∩ A = A

解:
Since, A ∩ B ? B, therefore A ∩ A ? ALet x ∈ A ? x ∈ Aand x ∈ A? x ∈ A ∩ A∴ A ? A ∩ AAs A ∩ A ? A and A ? A ∩ A ? A = A ∩ A. Hence Proved.

示例2:证明的关联法则:
(a) (A ∪ B) ∪ C = A ∪ (B ∪ C)

解:
Let some x ∈ (A'∪ B) ∪ C?(x ∈ Aorx ∈ B)orx ∈ C?x ∈ Aorx ∈ Borx ∈ C?x ∈ Aor(x ∈ Borx ∈ C)?x ∈ Aorx ∈ B ∪ C ?x ∈ A ∪ (B ∪ C).Similarly, if somex ∈ A ∪ (B ∪ C), thenx ∈ (A ∪ B) ∪ C.Thus, anyx ∈ A ∪ (B ∪ C) ?x ∈ (A ∪ B) ∪ C. Hence Proved.

(b) (A ∩ B) ∩ C = A ∩ (B ∩ C)

解:
Let some x ∈ A ∩ (B ∩ C) ?x ∈ A and x ∈ B ∩ C ?x ∈ Aand (x ∈ B and x ∈ C)?x ∈ Aand x ∈ B and x ∈ C?(x ∈ Aand x ∈ B) and x ∈ C)?x ∈ A ∩ B and x ∈ C?x ∈ (A ∩ B) ∩ C.Similarly, if somex ∈ A ∩ (B ∩ C), then x ∈ (A ∩ B) ∩ CThus, anyx ∈ (A ∩ B) ∩ C?x ∈ A ∩ (B ∩ C). Hence Proved.

例3:证明交换律
(a)A ∪ B = B ∪ A

解:
To Prove A ∪ B = B ∪ AA ∪ B = {x: x ∈ A or x ∈ B}= {x: x ∈ B or x ∈ A}(∵ Order is not preserved in case of sets)A ∪ B = B ∪ A. Hence Proved.

(b) A ∩ B = B ∩ A

解:
To Prove A ∩ B = B ∩ AA ∩ B = {x: x ∈ A and x ∈ B}= {x: x ∈ B and x ∈ A}(∵ Order is not preserved in case of sets)A ∩ B = B ∩ A. Hence Proved.

示例4:证明分配定律
(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

解:
To Prove Let x ∈ A ∪ (B ∩ C)? x ∈ A orx ∈ B ∩ C ?(x ∈ Aor x ∈ A) or (x ∈ B andx ∈ C)?(x ∈ Aor x ∈ B) and (x ∈ Aor x ∈ C)?x ∈ A ∪ B andx ∈ A ∪ C?x ∈ (A ∪ B) ∩ (A ∪ C)Therefore, A ∪ (B ∩ C) ? (A ∪ B) ∩ (A ∪ C)............(i)Again, Let y ∈ (A ∪ B)∩ (A ∪ C) ?y ∈ A ∪ B and y ∈ A ∪ C?(y ∈ A or y ∈ B) and (y ∈ A or y ∈ C)?(y ∈ A and y ∈ A) or (y ∈ B and y ∈ C)?y ∈ Aory ∈ B ∩ C?y ∈ A∪ (B ∩ C)Therefore, (A ∪ B) ∩ (A ∪ C) ? A ∪ (B ∩ C)............(ii)Combining (i) and (ii), we get A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Hence Proved

(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

解:
To Prove Let x ∈ A ∩ (B ∪ C)?x ∈ A and x ∈ B ∪ C ?(x ∈ A and x ∈ A) and (x ∈ Bor x ∈ C)?(x ∈ A and x ∈ B) or(x ∈ A and x ∈ C)?x ∈ A ∩ B orx ∈ A ∩ C?x ∈ (A ∩ B) ∪ (A ∪ C)Therefore, A ∩ (B ∪ C) ? (A ∩ B) ∪ (A ∪ C)............ (i)Again, Lety ∈ (A ∩ B) ∪ (A ∪ C) ? y ∈ A ∩ B or y ∈ A ∩ C?(y ∈ A and y ∈ B) or (y ∈ A and y ∈ C)?(y ∈ A or y ∈ A) and (y ∈ B or y ∈ C)? y ∈ A andy ∈ B ∪ C? y ∈ A ∩ (B ∪ C)Therefore, (A ∩ B) ∪ (A ∪ C) ? A ∩ (B ∪ C)............ (ii)Combining (i) and (ii), we get A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∪ C). Hence Proved

示例5:证明德摩根定律
(a) (A ∪B)c=Ac∩ Bc

【集合代数】解:
To Prove (A ∪B)c=Ac∩ BcLet x ∈ (A ∪B)c?x ?A ∪ B(∵ a ∈ A ? a ? Ac)?x ?A and x ? B?x ?Ac and x ? Bc?x ?Ac∩ BcTherefore, (A ∪B)c ? Ac∩ Bc............. (i)Again, let x ∈ Ac∩ Bc ? x ∈ Ac and x ∈ Bc? x ?A and x ? B?x ?A ∪ B? x ∈ (A ∪B)cTherefore, Ac∩ Bc? (A ∪B)c............. (ii)Combining (i) and (ii), we get Ac∩ Bc =(A ∪B)c. Hence Proved.

(b) (A ∩B)c = Ac∪ Bc

解:
Let x ∈ (A ∩B)c ? x ?A ∩ B(∵ a ∈ A ? a ? Ac)? x ?A or x ? B? x ∈ Ac and x ∈ Bc? x ∈ Ac∪ Bc∴ (A ∩B)c? (A ∪B)c.................. (i)Again, Let x ∈ Ac∪ Bc? x ∈ Ac or x ∈ Bc? x ?A or x ? B? x ?A ∩ B? x ∈ (A ∩B)c∴ Ac∪ Bc? (A ∩B)c.................... (ii)Combining (i) and (ii), we get(A ∩B)c=Ac∪ Bc. Hence Proved.

示例6:证明身份法则。
(a) A ∪ ? = A

解:
To Prove A ∪ ? = ALetx ∈ A ∪ ? ? x ∈ Aorx ∈ ?? x ∈ A(∵x ∈ ?, as ? is the null set )Therefore, x ∈ A ∪ ? ? x ∈ AHence, A ∪ ? ? A.We know that A ? A ∪ B for any set B. But for B = ?, we have A ? A ∪ ? From above, A ? A ∪ ? , A ∪ ? ? A ? A = A ∪ ?. Hence Proved.

(b) A ∩ ? = ?

解:
To Prove A ∩ ? = ?Ifx ∈ A, then x ??(∵? is a null set)Therefore, x ∈ A, x ?? ? A ∩ ? = ?. Hence Proved.

(c) A ∪ U = U

解:
To Prove A ∪ U = UEvery set is a subset of a universal set.∴A ∪ U ? UAlso, U ? A ∪ UTherefore, A ∪ U = U. Hence Proved.

(d) A ∩ U = A

解:
To Prove A ∩ U = AWe knowA ∩ U ? A................. (i)So we have to show that A ? A ∩ ULetx ∈ A ? x ∈ A and x ∈ U(∵ A ? U so x ∈ A ? x ∈ U )∴x ∈ A ? x ∈ A ∩ U∴A ? A ∩ U................. (ii)From (i) and (ii), we get A ∩ U = A. Hence Proved.

例7:证明补充法则
(a) A ∪ Ac= U

解:
To Prove A ∪ Ac= UEvery set is a subset of U∴A ∪ Ac ? U.................. (i)We have to show that U ? A ∪ AcLet x ∈ U?x ∈ Aorx ?A?x ∈ Aorx ∈ Ac? x ∈ A ∪ Ac∴ U ? A ∪ Ac................... (ii)From (i) and (ii), we get A ∪ Ac= U. Hence Proved.

(b) A ∩ Ac=?

解:
As ? is the subset of every set∴? ? A ∩ Ac..................... (i)We have to show that A ∩ Ac ? ?Let x ∈ A ∩ Ac? x ∈ A and x ∈Ac? x ∈ Aand x ?A? x ∈ ?∴A ∩ Ac ??..................... (ii)From (i) and (ii), we get A∩ Ac=?. Hence Proved.

(c) Uc= ?

解:
Let x ∈ Uc? x ? U ? x ∈ ?∴ Uc= ?. Hence Proved.(As U is the Universal Set).

(d) ?c = U

解:
Let x ∈ ?c ? x ? ?? x ∈ U(As ? is an empty set) ∴ ?c = U.Hence Proved.

示例8:证明对合律
(a) (Ac )c A.

解:
Let x ∈ (Ac )c ? x ? Ac?x ∈ a∴ (Ac )c =A. Hence Proved.

二元性 E的对偶E ?是通过分别用∩, ∪, ?和U代替E中的每次出现∪, ∩, U和obtained而获得的方程。例如, 双重
(U ∩ A) ∪ (B ∩ A) = A is (? ∪ A) ∩ (B ∪ A) = A

作为对偶原理, 要指出的是, 如果任何方程E是一个恒等式, 那么它的对偶E *也是一个恒等式。
延伸原理 根据扩展原理, 只有当A和B具有相同的成员时, 它们才是相同的。我们用A = B表示相等的集合。
If A= {1, 3, 5} and B= {3, 1, 5}, then A=B i.e., A and B are equal sets. If A= {1, 4, 7} and B= {5, 4, 8}, then A≠ B i.e.., A and B are unequal sets.

两套笛卡尔积 按此顺序的两个集合P和Q的笛卡尔积是所有有序对的集合, 其第一个成员属于集合P, 第二个成员属于集合Q并用P x Q表示, 即
P x Q = {(x, y): x ∈ P, y ∈ Q}.

示例:令P = {a, b, c}和Q = {k, l, m, n}。确定P和Q的笛卡尔积。
解决方案:P和Q的笛卡尔积为
集合代数

    推荐阅读