go语言拼字符串 go语言字符串转换成数字

go语言怎么将二进制转为字符串func ByteToBinaryString(data byte) (str string) {
var a byte
for i:=0; i8; i++ {
a = data
data = https://www.04ip.com/post/1
data = https://www.04ip.com/post/1
switch (a) {
case data: str += "0"
default: str += "1"
}
data = https://www.04ip.com/post/1
}
return str
}
//该代码片段来自于:
使用方法package main
import . "fmt"
func main() {
Printf("[%s][%s][%s][%s]\n",
ByteToBinaryString(byte(0)),ByteToBinaryString(byte(231)),
ByteToBinaryString(byte(168)), ByteToBinaryString(byte(162)))
}
go语言string之Buffer与Builder操作字符串离不开字符串的拼接,但是Go中string是只读类型,大量字符串的拼接会造成性能问题 。
拼接字符串,无外乎四种方式 , 采用“+”,“fmt.Sprintf()”,"bytes.Buffer","strings.Builder"
上面我们创建10万字符串拼接的测试,可以发现"bytes.Buffer","strings.Builder"的性能最好,约是“+”的1000倍级别 。
这是由于string是不可修改的,所以在使用“+”进行拼接字符串,每次都会产生申请空间,拼接,复制等操作,数据量大的情况下非常消耗资源和性能 。而采用Buffer等方式,都是预先计算拼接字符串数组的总长度(如果可以知道长度) , 申请空间,底层是slice数组,可以以append的形式向后进行追加 。最后在转换为字符串 。这申请了不断申请空间的操作,也减少了空间的使用和拷贝的次数,自然性能也高不少 。
bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte
是一个变长的 buffer,具有 Read 和Write 方法 。Buffer 的 零值 是一个 空的 buffer,但是可以使用,底层就是一个 []byte ,  字节切片 。
向Buffer中写数据,可以看出Buffer中有个Grow函数用于对切片进行扩容 。
从Buffer中读取数据
strings.Builder的方法和bytes.Buffer的方法的命名几乎一致 。
但实现并不一致,Builder的Write方法直接将字符拼接slice数组后 。
其没有提供read方法 , 但提供了strings.Reader方式
Reader 结构:
Buffer:
Builder:
可以看出Buffer和Builder底层都是采用[]byte数组进行装载数据 。
先来说说Buffer:
创建好Buffer是一个empty的,off 用于指向读写的尾部 。
在写的时候,先判断当前写入字符串长度是否大于Buffer的容量 , 如果大于就调用grow进行扩容,扩容申请的长度为当前写入字符串的长度 。如果当前写入字符串长度小于最小字节长度64,直接创建64长度的[]byte数组 。如果申请的长度小于二分之一总容量减去当前字符总长度 , 说明存在很大一部分被使用但已读 , 可以将未读的数据滑动到数组头 。如果容量不足 , 扩展2*c + n。
其String()方法就是将字节数组强转为string
Builder是如何实现的 。
Builder采用append的方式向字节数组后添加字符串 。
从上面可以看出,[]byte的内存大小也是以倍数进行申请的,初始大小为 0,第一次为大于当前申请的最大 2 的指数 , 不够进行翻倍.
可以看出如果旧容量小于1024进行翻倍,否则扩展四分之一 。(2048 byte 后,申请策略的调整) 。
其次String()方法与Buffer的string方法也有明显区别 。Buffer的string是一种强转,我们知道在强转的时候是需要进行申请空间,并拷贝的 。而Builder只是指针的转换 。
这里我们解析一下 *(*string)(unsafe.Pointer(b.buf)) 这个语句的意思 。
先来了解下unsafe.Pointer 的用法 。
也就是说,unsafe.Pointer 可以转换为任意类型,那么意味着 , 通过unsafe.Pointer媒介,程序绕过类型系统,进行地址转换而不是拷贝 。

推荐阅读