低压|集微咨询:千呼万唤始出来的苹果GaN快充,拉开下一个GaN爆点的序幕( 三 )


例如在80V-150V平台的数据中心应用中,服务器电源由功率因数校正(PFC)级(例如推挽电路)和一个谐振DC/DC级(LLC谐振转换器)组成,输出电压通常为12V。为了节省大量能源,从而降低电力成本,目前的趋势是向48V电源发展。而更高的电压可将输电线路上的功耗最高减少到原来的1/16。氮化镓技术可以让转换器的每一级都受益。对于功率因数校正级,其低电容和零反向恢复可以允许配置一个简单的推挽电路;对于LLC转换器级,其更快的开关速度和更小的损耗使其可以采用更小的磁体和电容。此外,氮化镓技术使得在同步整流中死区时间最上,同时也也减少了了损耗。最终的结果就是大幅提高了服务器主板的功率密度。
而在30-60V平台应用的电源系统更贴近消费和移动电子设备,而最大的市场就是消费类市场,30-40V的GaN器件可以支撑消费类电子包括手机、PC等的主板的充电密度大幅度提升。我们平常所说的充电功率xx瓦,是主板、电池等各个部件的性能的综合体现。现在快充遇到的问题,不是适配器的功率提不上去,而是主板的功率密度提不上去,原因是发热太高带来了一些安全隐患,也就造成了一些使用限制。因此这类应用在提升功率密度的充电密度和充电功率的情况下,一定要控制发热,其关键是要把功率器件的损耗降低,这方面GaN的优势就得到了很好的体现。另一方面,随着功率的提升,占板面积变大,智能手机这些小型的设备对占板面积要求非常苛刻,大部分面积用于电池和摄像头等模组,要在尽可能小的占板面积内实现更大的功率,就面临着非常大的挑战。这就是另一个设计关键,在提升功率的时候,怎样保证占板面积不变甚至缩小。在这里GaN的高频特性又发挥了重要作用。
因此,集微咨询(JW insights)认为,GaN高频特性带来的优势不仅仅是性能上的收益,在减小面积、周围感性器件、容性器件的使用减少等方面更是整个BoM的收益。而高频只能在低压的场景下来实现,不可能在高压650V把频率做到1MHz以上,因为现阶段的变压器的磁性器件还无法匹配频值的升高。在低压范围内,现有的BCD工艺,CMOS的集成或分立工艺的频率,小功率应用最高能做到1.2MHz,大功率的应用例如服务器电源在700KHz左右。GaN器件频率理论上在大功率下可以达到10MHz,小功率下更高。因此只有把频率做高,才能真正发挥氮化镓的优势,也就意味着在当前低压应用能够最大程度地发挥其优势。
30V-40V的GaN器件可支撑消费类电子产品主板充电密度和功率的大幅提升。长期来看,以GaN为基础的48V电源架构的革新,将实现消费类电子产品主板电源的“All-GaN”解决方案。因此,不论是智能手机、数据中心,5G或是电动汽车等对功率器件同样要求更小尺寸、更大功率、更低损耗的低压氮化镓应用,将成为未来氮化镓主要的增长市场。
低压|集微咨询:千呼万唤始出来的苹果GaN快充,拉开下一个GaN爆点的序幕
文章插图
Yole对GaN功率器件市场的预测,但行业普遍认为该数据较为保守
随着各领域SoC集成度、数据处理能力的大规模提升,对其供电系统的高频、高功率密度需求越来越迫切。这种市场诉求,结合低压氮化镓技术的不断成熟,竞争力提升,将大大加速低压氮化镓生态的发展和成熟,成为氮化镓大规模商用的真正爆点。根据Yole估计,在0~900V的中低压应用中,GaN都有较大的潜力。按照整体市场154亿美元来推测,占据68%的该部分低压市场都是GaN的潜在市场,约有105亿美元。
结语
在2019年之前,GaN功率器件主要还是一些小众应用领域。但自从使用GaN技术的智能手机快充(>28瓦)问世后,其更小的外形尺寸、更高的效率和性价比,使之在手机以及笔记本电脑应用中备受青睐。GaN的主要应用是开关电源(SMPS),因为它可满足快速开关和高效率的需求。IHS Markit预测便携电源适配器(我们现在看到,氮化镓技术开始在便携电源适配器中加速使用,随着这一领域获得成功,预计它将会在更高功率、更为关键的一些应用领域得到应用。

推荐阅读