锐客网


首页 > 科技 > it技术 > >

python爬虫实战steam加密逆向RSA登录解析

『锐客网摘要_python爬虫实战steam加密逆向RSA登录解析』目录 采集目标 工具准备 项目思路解析 采集目标 网址:steam 文章图片 工具准备 开发工具:pycharm 开发环境:python3.7, Windows10 使用工具包:requests 项目思路解析 访问登录页面重登录页...


按关键词阅读:

目录

  • 采集目标
  • 工具准备
  • 项目思路解析

采集目标 网址:steam
python爬虫实战steam加密逆向RSA登录解析
文章图片


工具准备 开发工具:pycharm
开发环境:python3.7, Windows10 使用工具包:requests

项目思路解析 访问登录页面重登录页面获取登录接口, 先输入错误的账户密码去测试登录接口。
python爬虫实战steam加密逆向RSA登录解析
文章图片

获取到登录的接口地址,请求方法是post请求,找到需要传递的参数,可以看到密码数据是加密的第一个数据是时间戳密码加密字段应该用的base64,rsatimestamp字段目前还不清楚是什么,其他的都是固定数据。
python爬虫实战steam加密逆向RSA登录解析
文章图片

找到password字段的加密位置,这里我们直接进行搜索,找加密位置,可以通过名字来大致判断加密文件。
python爬虫实战steam加密逆向RSA登录解析
文章图片

在文件进行搜索,查看数据值是否存在。
python爬虫实战steam加密逆向RSA登录解析
文章图片

当前可以看出代码为rsa加密,这里辣条选择直接补js环境,先把加密段代码端进行添加,rsa加密的公秘钥需要重其他它接口获取。
python爬虫实战steam加密逆向RSA登录解析
文章图片

python爬虫实战steam加密逆向RSA登录解析
文章图片

加密的秘钥以及其他来自这个页面,需要提取发送请求获取到,要注意cookie需要保持一致,开始补js环境。
python爬虫实战steam加密逆向RSA登录解析
文章图片

我们不需要账号信息的获取,可以直接注释掉,打印数据,尝试运行,哪里报错补哪里。
python爬虫实战steam加密逆向RSA登录解析
文章图片

少了rsa功能。
python爬虫实战steam加密逆向RSA登录解析
文章图片

当前文件都拿过来,后面的方法也一样的直接拿过来就行。
// Copyright (c) 2005Tom Wu// All Rights Reserved.// See "LICENSE" for details.?/* * Copyright (c) 2003-2005Tom Wu * All Rights Reserved. * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * In addition, the following condition applies: * All redistributions must retain an intact copy of this copyright notice * and disclaimer. */?// Basic JavaScript BN library - subset useful for RSA encryption.?// Bits per digitvar dbits; ?// JavaScript engine analysisvar canary = 0xdeadbeefcafe; var j_lm = ((canary&0xffffff)==0xefcafe); ?// (public) Constructorfunction BigInteger(a,b,c) {if(a != null)if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b); }?// return new, unset BigIntegerfunction nbi() { return new BigInteger(null); }?// am: Compute w_j += (x*this_i), propagate carries,// c is initial carry, returns final carry.// c < 3*dvalue, x < 2*dvalue, this_i < dvalue// We need to select the fastest one that works in this environment.?// am1: use a single mult and divide to get the high bits,// max digit bits should be 26 because// max internal value = https://www.it610.com/article/2*dvalue^2-2*dvalue (< 2^53)function am1(i,x,w,j,c,n) {while(--n>= 0) {var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; }return c; }// am2 avoids a big mult-and-extract completely.// Max digit bits should be <= 30 because we do bitwise ops// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)function am2(i,x,w,j,c,n) {var xl = x&0x7fff, xh = x>>15; while(--n >= 0) {var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; }return c; }// Alternately, set max digit bits to 28 since some// browsers slow down when dealing with 32-bit numbers.function am3(i,x,w,j,c,n) {var xl = x&0x3fff, xh = x>>14; while(--n >= 0) {var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; }return c; }if(j_lm) {BigInteger.prototype.am = am2; dbits = 30; }else if(j_lm) {BigInteger.prototype.am = am1; dbits = 26; }else { // Mozilla/Netscape seems to prefer am3BigInteger.prototype.am = am3; dbits = 28; }?BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; }?// (protected) set from integer value x, -DV <= x < DVfunction bnpFromInt(x) {this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+DV; else this.t = 0; }?// return bigint initialized to valuefunction nbv(i) { var r = nbi(); r.fromInt(i); return r; }?// (protected) set from string and radixfunction bnpFromString(s,b) {var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte arrayelse if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; }this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) {var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) {if(s.charAt(i) == "-") mi = true; continue; }mi = false; if(sh == 0)this[this.t++] = x; else if(sh+k > this.DB) {this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); }elsethis[this.t-1] |= x<= this.DB) sh -= this.DB; }if(k == 8 && (s[0]&0x80) != 0) {this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; }?// (public) return string representation in given radixfunction bnToString(b) {if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1< 0) {if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }while(i >= 0) {if(p < k) {d = (this[i]&((1<>(p+=this.DB-k); }else {d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; }}if(d > 0) m = true; if(m) r += int2char(d); }}return m?r:"0"; }?// (public) -thisfunction bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }?// (public) |this|function bnAbs() { return (this.s<0)?this.negate():this; }?// (public) return + if this > a, - if this < a, 0 if equalfunction bnCompareTo(a) {var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0; }?// returns bit length of the integer xfunction nbits(x) {var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; }if((t=x>>8) != 0) { x = t; r += 8; }if((t=x>>4) != 0) { x = t; r += 4; }if((t=x>>2) != 0) { x = t; r += 2; }if((t=x>>1) != 0) { x = t; r += 1; }return r; }?// (public) return the number of bits in "this"function bnBitLength() {if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); }?// (protected) r = this << n*DBfunction bnpDLShiftTo(n,r) {var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; }?// (protected) r = this >> n*DBfunction bnpDRShiftTo(n,r) {for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; }?// (protected) r = this << nfunction bnpLShiftTo(n,r) {var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<= 0; --i) {r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp(); }?// (protected) r = this >> nfunction bnpRShiftTo(n,r) {r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; }var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<>bs; for(var i = ds+1; i < this.t; ++i) {r[i-ds-1] |= (this[i]&bm)<>bs; }if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; }if(a.t < this.t) {c -= a.s; while(i < this.t) {c += this[i]; r[i++] = c&this.DM; c >>= this.DB; }c += this.s; }else {c += this.s; while(i < a.t) {c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; }c -= a.s; }r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp(); }?// (protected) r = this * a, r != this,a (HAC 14.12)// "this" should be the larger one if appropriate.function bnpMultiplyTo(a,r) {var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r); }?// (protected) r = this^2, r != this (HAC 14.16)function bnpSquareTo(r) {var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) {var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {r[i+x.t] -= x.DV; r[i+x.t+1] = 1; }}if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp(); }?// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)// r != q, this != m.q or r may be null.function bnpDivRemTo(m,q,r) {var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) {if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; }if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulusif(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }else { pm.copyTo(y); pt.copyTo(r); }var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<= 0) {r[r.t++] = 1; r.subTo(t,r); }BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am laterwhile(y.t < ys) y[y.t++] = 0; while(--j >= 0) {// Estimate quotient digitvar qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {// Try it outy.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); }}if(q != null) {r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); }r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainderif(ts < 0) BigInteger.ZERO.subTo(r,r); }?// (public) this mod afunction bnMod(a) {var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r; }?// Modular reduction using "classic" algorithmfunction Classic(m) { this.m = m; }function cConvert(x) {if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; }function cRevert(x) { return x; }function cReduce(x) { x.divRemTo(this.m,null,x); }function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }?Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; ?// (protected) return "-1/this % 2^DB"; useful for Mont. reduction// justification://xy == 1 (mod m)//xy =1+km//xy(2-xy) = (1+km)(1-km)// x[y(2-xy)] = 1-k^2m^2// x[y(2-xy)] == 1 (mod m^2)// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.// JS multiply "overflows" differently from C/C++, so care is needed here.function bnpInvDigit() {if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16// last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit intsy = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits// we really want the negative inverse, and -DV < y < DVreturn (y>0)?this.DV-y:-y; }?// Montgomery reductionfunction Montgomery(m) {this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t; }?// xR mod mfunction montConvert(x) {var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r; }?// x/R mod mfunction montRevert(x) {var r = nbi(); x.copyTo(r); this.reduce(r); return r; }?// x = x/R mod m (HAC 14.32)function montReduce(x) {while(x.t <= this.mt2)// pad x so am has enough room laterx[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) {// faster way of calculating u0 = x[i]*mp mod DVvar j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one callj = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carrywhile(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }}x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); }?// r = "x^2/R mod m"; x != rfunction montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }?// r = "xy/R mod m"; x,y != rfunction montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }?Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; ?// (protected) true iff this is evenfunction bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }?// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)function bnpExp(e,z) {if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) {z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; }}return z.revert(r); }?// (public) this^e % m, 0 <= e < 2^32function bnModPowInt(e,m) {var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); }?// protectedBigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; ?// publicBigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; ?// "constants"BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); ??// Copyright (c) 2005Tom Wu// All Rights Reserved.// See "LICENSE" for details.?// Extended JavaScript BN functions, required for RSA private ops.?// (public)function bnClone() { var r = nbi(); this.copyTo(r); return r; }?// (public) return value as integerfunction bnIntValue() {if(this.s < 0) {if(this.t == 1) return this[0]-this.DV; else if(this.t == 0) return -1; }else if(this.t == 1) return this[0]; else if(this.t == 0) return 0; // assumes 16 < DB < 32return ((this[1]&((1<<(32-this.DB))-1))<>24; }?// (public) return value as short (assumes DB>=16)function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }?// (protected) return x s.t. r^x < DVfunction bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }?// (public) 0 if this == 0, 1 if this > 0function bnSigNum() {if(this.s < 0) return -1; else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; }?// (protected) convert to radix stringfunction bnpToRadix(b) {if(b == null) b = 10; if(this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d,y,z); while(y.signum() > 0) {r = (a+z.intValue()).toString(b).substr(1) + r; y.divRemTo(d,y,z); }return z.intValue().toString(b) + r; }?// (protected) convert from radix stringfunction bnpFromRadix(s,b) {this.fromInt(0); if(b == null) b = 10; var cs = this.chunkSize(b); var d = Math.pow(b,cs), mi = false, j = 0, w = 0; for(var i = 0; i < s.length; ++i) {var x = intAt(s,i); if(x < 0) {if(s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; }w = b*w+x; if(++j >= cs) {this.dMultiply(d); this.dAddOffset(w,0); j = 0; w = 0; }}if(j > 0) {this.dMultiply(Math.pow(b,j)); this.dAddOffset(w,0); }if(mi) BigInteger.ZERO.subTo(this,this); }?// (protected) alternate constructorfunction bnpFromNumber(a,b,c) {if("number" == typeof b) {// new BigInteger(int,int,RNG)if(a < 2) this.fromInt(1); else {this.fromNumber(a,c); if(!this.testBit(a-1))// force MSB setthis.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); if(this.isEven()) this.dAddOffset(1,0); // force oddwhile(!this.isProbablePrime(b)) {this.dAddOffset(2,0); if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); }}}else {// new BigInteger(int,RNG)var x = new Array(), t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1< 0) {if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)r[k++] = d|(this.s<<(this.DB-p)); while(i >= 0) {if(p < 8) {d = (this[i]&((1<>(p+=this.DB-8); }else {d = (this[i]>>(p-=8))&0xff; if(p <= 0) { p += this.DB; --i; }}if((d&0x80) != 0) d |= -256; if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; if(k > 0 || d != this.s) r[k++] = d; }}return r; }?function bnEquals(a) { return(this.compareTo(a)==0); }function bnMin(a) { return(this.compareTo(a)<0)?this:a; }function bnMax(a) { return(this.compareTo(a)>0)?this:a; }?// (protected) r = this op a (bitwise)function bnpBitwiseTo(a,op,r) {var i, f, m = Math.min(a.t,this.t); for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); if(a.t < this.t) {f = a.s&this.DM; for(i = m; i < this.t; ++i) r[i] = op(this[i],f); r.t = this.t; }else {f = this.s&this.DM; for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); r.t = a.t; }r.s = op(this.s,a.s); r.clamp(); }?// (public) this & afunction op_and(x,y) { return x&y; }function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }?// (public) this | afunction op_or(x,y) { return x|y; }function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }?// (public) this ^ afunction op_xor(x,y) { return x^y; }function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }?// (public) this & ~afunction op_andnot(x,y) { return x&~y; }function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }?// (public) ~thisfunction bnNot() {var r = nbi(); for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; r.t = this.t; r.s = ~this.s; return r; }?// (public) this << nfunction bnShiftLeft(n) {var r = nbi(); if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); return r; }?// (public) this >> nfunction bnShiftRight(n) {var r = nbi(); if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); return r; }?// return index of lowest 1-bit in x, x < 2^31function lbit(x) {if(x == 0) return -1; var r = 0; if((x&0xffff) == 0) { x >>= 16; r += 16; }if((x&0xff) == 0) { x >>= 8; r += 8; }if((x&0xf) == 0) { x >>= 4; r += 4; }if((x&3) == 0) { x >>= 2; r += 2; }if((x&1) == 0) ++r; return r; }?// (public) returns index of lowest 1-bit (or -1 if none)function bnGetLowestSetBit() {for(var i = 0; i < this.t; ++i)if(this[i] != 0) return i*this.DB+lbit(this[i]); if(this.s < 0) return this.t*this.DB; return -1; }?// return number of 1 bits in xfunction cbit(x) {var r = 0; while(x != 0) { x &= x-1; ++r; }return r; }?// (public) return number of set bitsfunction bnBitCount() {var r = 0, x = this.s&this.DM; for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); return r; }?// (public) true iff nth bit is setfunction bnTestBit(n) {var j = Math.floor(n/this.DB); if(j >= this.t) return(this.s!=0); return((this[j]&(1<<(n%this.DB)))!=0); }?// (protected) this op (1<>= this.DB; }if(a.t < this.t) {c += a.s; while(i < this.t) {c += this[i]; r[i++] = c&this.DM; c >>= this.DB; }c += this.s; }else {c += this.s; while(i < a.t) {c += a[i]; r[i++] = c&this.DM; c >>= this.DB; }c += a.s; }r.s = (c<0)?-1:0; if(c > 0) r[i++] = c; else if(c < -1) r[i++] = this.DV+c; r.t = i; r.clamp(); }?// (public) this + afunction bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }?// (public) this - afunction bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }?// (public) this * afunction bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }?// (public) this / afunction bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }?// (public) this % afunction bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }?// (public) [this/a,this%a]function bnDivideAndRemainder(a) {var q = nbi(), r = nbi(); this.divRemTo(a,q,r); return new Array(q,r); }?// (protected) this *= n, this >= 0, 1 < n < DVfunction bnpDMultiply(n) {this[this.t] = this.am(0,n-1,this,0,0,this.t); ++this.t; this.clamp(); }?// (protected) this += n << w words, this >= 0function bnpDAddOffset(n,w) {while(this.t <= w) this[this.t++] = 0; this[w] += n; while(this[w] >= this.DV) {this[w] -= this.DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; }}?// A "null" reducerfunction NullExp() {}function nNop(x) { return x; }function nMulTo(x,y,r) { x.multiplyTo(y,r); }function nSqrTo(x,r) { x.squareTo(r); }?NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; ?// (public) this^efunction bnPow(e) { return this.exp(e,new NullExp()); }?// (protected) r = lower n words of "this * a", a.t <= n// "this" should be the larger one if appropriate.function bnpMultiplyLowerTo(a,n,r) {var i = Math.min(this.t+a.t,n); r.s = 0; // assumes a,this >= 0r.t = i; while(i > 0) r[--i] = 0; var j; for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); r.clamp(); }?// (protected) r = "this * a" without lower n words, n > 0// "this" should be the larger one if appropriate.function bnpMultiplyUpperTo(a,n,r) {--n; var i = r.t = this.t+a.t-n; r.s = 0; // assumes a,this >= 0while(--i >= 0) r[i] = 0; for(i = Math.max(n-this.t,0); i < a.t; ++i)r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); r.clamp(); r.drShiftTo(1,r); }?// Barrett modular reductionfunction Barrett(m) {// setup Barrettthis.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2*m.t,this.r2); this.mu = this.r2.divide(m); this.m = m; }?function barrettConvert(x) {if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); else if(x.compareTo(this.m) < 0) return x; else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }}?function barrettRevert(x) { return x; }?// x = x mod m (HAC 14.42)function barrettReduce(x) {x.drShiftTo(this.m.t-1,this.r2); if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); x.subTo(this.r2,x); while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); }?// r = x^2 mod m; x != rfunction barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }?// r = x*y mod m; x,y != rfunction barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }?Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype.reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; ?// (public) this^e % m (HAC 14.85)function bnModPow(e,m) {var i = e.bitLength(), k, r = nbv(1), z; if(i <= 0) return r; else if(i < 18) k = 1; else if(i < 48) k = 3; else if(i < 144) k = 4; else if(i < 768) k = 5; else k = 6; if(i < 8)z = new Classic(m); else if(m.isEven())z = new Barrett(m); elsez = new Montgomery(m); ?// precomputationvar g = new Array(), n = 3, k1 = k-1, km = (1< 1) {var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) {g[n] = nbi(); z.mulTo(g2,g[n-2],g[n]); n += 2; }}?var j = e.t-1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j])-1; while(j >= 0) {if(i >= k1) w = (e[j]>>(i-k1))&km; else {w = (e[j]&((1<<(i+1))-1))<<(k1-i); if(j > 0) w |= e[j-1]>>(this.DB+i-k1); }?n = k; while((w&1) == 0) { w >>= 1; --n; }if((i -= n) < 0) { i += this.DB; --j; }if(is1) {// ret == 1, don't bother squaring or multiplying itg[w].copyTo(r); is1 = false; }else {while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }z.mulTo(r2,g[w],r); }?while(j >= 0 && (e[j]&(1< 0) {x.rShiftTo(g,x); y.rShiftTo(g,y); }while(x.signum() > 0) {if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); if(x.compareTo(y) >= 0) {x.subTo(y,x); x.rShiftTo(1,x); }else {y.subTo(x,y); y.rShiftTo(1,y); }}if(g > 0) y.lShiftTo(g,y); return y; }?// (protected) this % n, n < 2^26function bnpModInt(n) {if(n <= 0) return 0; var d = this.DV%n, r = (this.s<0)?n-1:0; if(this.t > 0)if(d == 0) r = this[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; return r; }?// (public) 1/this % m (HAC 14.61)function bnModInverse(m) {var ac = m.isEven(); if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while(u.signum() != 0) {while(u.isEven()) {u.rShiftTo(1,u); if(ac) {if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }a.rShiftTo(1,a); }else if(!b.isEven()) b.subTo(m,b); b.rShiftTo(1,b); }while(v.isEven()) {v.rShiftTo(1,v); if(ac) {if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }c.rShiftTo(1,c); }else if(!d.isEven()) d.subTo(m,d); d.rShiftTo(1,d); }if(u.compareTo(v) >= 0) {u.subTo(v,u); if(ac) a.subTo(c,a); b.subTo(d,b); }else {v.subTo(u,v); if(ac) c.subTo(a,c); d.subTo(b,d); }}if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if(d.compareTo(m) >= 0) return d.subtract(m); if(d.signum() < 0) d.addTo(m,d); else return d; if(d.signum() < 0) return d.add(m); else return d; }?var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; var lplim = (1<<26)/lowprimes[lowprimes.length-1]; ?// (public) test primality with certainty >= 1-.5^tfunction bnIsProbablePrime(t) {var i, x = this.abs(); if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {for(i = 0; i < lowprimes.length; ++i)if(x[0] == lowprimes[i]) return true; return false; }if(x.isEven()) return false; i = 1; while(i < lowprimes.length) {var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x.modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false; }return x.millerRabin(t); }?// (protected) true if probably prime (HAC 4.24, Miller-Rabin)function bnpMillerRabin(t) {var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if(k <= 0) return false; var r = n1.shiftRight(k); t = (t+1)>>1; if(t > lowprimes.length) t = lowprimes.length; var a = nbi(); for(var i = 0; i < t; ++i) {a.fromInt(lowprimes[i]); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {var j = 1; while(j++ < k && y.compareTo(n1) != 0) {y = y.modPowInt(2,this); if(y.compareTo(BigInteger.ONE) == 0) return false; }if(y.compareTo(n1) != 0) return false; }}return true; }?// protectedBigInteger.prototype.chunkSize = bnpChunkSize; BigInteger.prototype.toRadix = bnpToRadix; BigInteger.prototype.fromRadix = bnpFromRadix; BigInteger.prototype.fromNumber = bnpFromNumber; BigInteger.prototype.bitwiseTo = bnpBitwiseTo; BigInteger.prototype.changeBit = bnpChangeBit; BigInteger.prototype.addTo = bnpAddTo; BigInteger.prototype.dMultiply = bnpDMultiply; BigInteger.prototype.dAddOffset = bnpDAddOffset; BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; BigInteger.prototype.modInt = bnpModInt; BigInteger.prototype.millerRabin = bnpMillerRabin; ?// publicBigInteger.prototype.clone = bnClone; BigInteger.prototype.intValue = https://www.it610.com/article/bnIntValue; BigInteger.prototype.byteValue = bnByteValue; BigInteger.prototype.shortValue = bnShortValue; BigInteger.prototype.signum = bnSigNum; BigInteger.prototype.toByteArray = bnToByteArray; BigInteger.prototype.equals = bnEquals; BigInteger.prototype.min = bnMin; BigInteger.prototype.max = bnMax; BigInteger.prototype.and = bnAnd; BigInteger.prototype.or = bnOr; BigInteger.prototype.xor = bnXor; BigInteger.prototype.andNot = bnAndNot; BigInteger.prototype.not = bnNot; BigInteger.prototype.shiftLeft = bnShiftLeft; BigInteger.prototype.shiftRight = bnShiftRight; BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; BigInteger.prototype.bitCount = bnBitCount; BigInteger.prototype.testBit = bnTestBit; BigInteger.prototype.setBit = bnSetBit; BigInteger.prototype.clearBit = bnClearBit; BigInteger.prototype.flipBit = bnFlipBit; BigInteger.prototype.add = bnAdd; BigInteger.prototype.subtract = bnSubtract; BigInteger.prototype.multiply = bnMultiply; BigInteger.prototype.divide = bnDivide; BigInteger.prototype.remainder = bnRemainder; BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; BigInteger.prototype.modPow = bnModPow; BigInteger.prototype.modInverse = bnModInverse; BigInteger.prototype.pow = bnPow; BigInteger.prototype.gcd = bnGCD; BigInteger.prototype.isProbablePrime = bnIsProbablePrime; ?// BigInteger interfaces not implemented in jsbn:?// BigInteger(int signum, byte[] magnitude)// double doubleValue()// float floatValue()// int hashCode()// long longValue()// static BigInteger valueOf(long val)????var RSAPublicKey = function($modulus_hex, $encryptionExponent_hex) {this.modulus = new BigInteger( $modulus_hex, 16); this.encryptionExponent = new BigInteger( $encryptionExponent_hex, 16); }; ?var Base64 = {base64:"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",encode: function($input) {if (!$input) {return false; }var $output = ""; var $chr1, $chr2, $chr3; var $enc1, $enc2, $enc3, $enc4; var $i = 0; do {$chr1 = $input.charCodeAt($i++); $chr2 = $input.charCodeAt($i++); $chr3 = $input.charCodeAt($i++); $enc1 = $chr1 >> 2; $enc2 = (($chr1 & 3) << 4) | ($chr2 >> 4); $enc3 = (($chr2 & 15) << 2) | ($chr3 >> 6); $enc4 = $chr3 & 63; if (isNaN($chr2)) $enc3 = $enc4 = 64; else if (isNaN($chr3)) $enc4 = 64; $output += this.base64.charAt($enc1) + this.base64.charAt($enc2) + this.base64.charAt($enc3) + this.base64.charAt($enc4); } while ($i < $input.length); return $output; },decode: function($input) {if(!$input) return false; $input = $input.replace(/[^A-Za-z0-9\+\/\=]/g, ""); var $output = ""; var $enc1, $enc2, $enc3, $enc4; var $i = 0; do {$enc1 = this.base64.indexOf($input.charAt($i++)); $enc2 = this.base64.indexOf($input.charAt($i++)); $enc3 = this.base64.indexOf($input.charAt($i++)); $enc4 = this.base64.indexOf($input.charAt($i++)); $output += String.fromCharCode(($enc1 << 2) | ($enc2 >> 4)); if ($enc3 != 64) $output += String.fromCharCode((($enc2 & 15) << 4) | ($enc3 >> 2)); if ($enc4 != 64) $output += String.fromCharCode((($enc3 & 3) << 6) | $enc4); } while ($i < $input.length); return $output; }}; ?var Hex = {hex: "0123456789abcdef",encode: function($input) {if(!$input) return false; var $output = ""; var $k; var $i = 0; do {$k = $input.charCodeAt($i++); $output += this.hex.charAt(($k >> 4) &0xf) + this.hex.charAt($k & 0xf); } while ($i < $input.length); return $output; },decode: function($input) {if(!$input) return false; $input = $input.replace(/[^0-9abcdef]/g, ""); var $output = ""; var $i = 0; do {$output += String.fromCharCode(((this.hex.indexOf($input.charAt($i++)) << 4) & 0xf0) | (this.hex.indexOf($input.charAt($i++)) & 0xf)); } while ($i < $input.length); return $output; }}; ?var RSA = {?getPublicKey: function( $modulus_hex, $exponent_hex ) {return new RSAPublicKey( $modulus_hex, $exponent_hex ); },?encrypt: function($data, $pubkey) {if (!$pubkey) return false; $data = https://www.it610.com/article/this.pkcs1pad2($data,($pubkey.modulus.bitLength()+7)>>3); if(!$data) return false; $data = https://www.it610.com/article/$data.modPowInt($pubkey.encryptionExponent, $pubkey.modulus); if(!$data) return false; $data = $data.toString(16); if(($data.length & 1) == 1)$data ="0" + $data; return Base64.encode(Hex.decode($data)); },?pkcs1pad2: function($data, $keysize) {if($keysize < $data.length + 11)return null; var $buffer = []; var $i = $data.length - 1; while($i >= 0 && $keysize > 0)$buffer[--$keysize] = $data.charCodeAt($i--); $buffer[--$keysize] = 0; while($keysize > 2)$buffer[--$keysize] = Math.floor(Math.random()*254) + 1; $buffer[--$keysize] = 2; $buffer[--$keysize] = 0; return new BigInteger($buffer); }}; ?OnAuthCodeResponse = function(results, password) {// var form = this.m_$LogonForm[0]; var pubKey = RSA.getPublicKey(results.publickey_mod, results.publickey_exp); // var username = this.m_strUsernameCanonical; // var password = form.elements['password'].value; password = password.replace(/[^\x00-\x7F]/g, ''); // remove non-standard-ASCII charactersvar encryptedPassword = RSA.encrypt(password, pubKey); return encryptedPassword}; ?console.log(OnAuthCodeResponse({'success': 'True', 'publickey_mod': 'aef25caaaba051405eb6be0ee34e927aa7378248279345a5c9cdb4f873de605e81167608b3f8592b7692d592373dae0b3b8e878dbcb3c25dda0d83d8b0b5e5432e59d33210749537f596841b7bd989594e6109d2ab63aed23052b0667de72c22e64f2e09a55066bf861bcf24f79336e75caff55887409c695bdf232d846b9e73a89a2df20a28fb580a504188f4a9e16e759e7aa5f454ce6e03aebf998cbc6ed478c24069af6ee8e06954fb9748bc387d811bfb33bc8d00b5400134bcbb8e872be4e8e60924754c10c522539dd1feeebc71f36c3f1d0484a914b8cbfb9966b403923d98821f02de5ec5d3ffba0b022dbf7cbfcec3fb88278bee580fe8f40960f9', 'publickey_exp': '010001', 'timestamp': '133267600000', 'token_gid': '27ddf868c7def6b4'}, '12345'))?// Gq8LwJWnpwJS438pSVx7qnOW0gGGAv7gZbZKmbQtVcww4wVqck0FPUYScf8IyBz7DIbNawHVrx4lShLCS2oOPqxKNV6IybKESkARGXV4TqiVHF36oXejbO89zFWop5JDBeZl1nbV2y99fbSqAx2P/oxt3lm33xebkwc42KJqK1sAHK+dZ8YVT1Ji9J3JNeTVZvoH/4I5oRkb2ai5DsURllQkGvut3b9eGx6MSumCTp0YCVGjE4oE9WSq8Gvq7sD7F8QNobfRGUKk1TvcYmeqwDtSTGQWascbAic7+/yKV0ej2AyHyIQ/nnUMWjI4HWDRAqxyAHKkB6mPFLKKJZiQLQ==

简易源码分享
import time?import execjsimport requests?login_url = 'https://store.steampowered.com/login/dologin/'get_rsa_key_url = 'https://store.steampowered.com/login/getrsakey/'?headers = {'Host': 'store.steampowered.com','Origin': 'https://store.steampowered.com','Referer': 'https://store.steampowered.com/login/?redir=&redir_ssl=1&snr=1_4_4__global-header','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36'}session = requests.session()?def get_rsa_key(username):data = https://www.it610.com/article/{'donotcache': str(int(time.time() * 1000)),'username': username}response = session.post(url=get_rsa_key_url, data=https://www.it610.com/article/data, headers=headers).json()print(response)return response?def get_encrypted_password(password, rsa_key_dict):f = open('steam.js', 'r', encoding='utf-8')steampowered_js = f.read()f.close()encrypted_password = execjs.compile(steampowered_js).call('OnAuthCodeResponse', password, rsa_key_dict)return encrypted_password?def login(username, encrypted_password, rsa_key_dict):data = https://www.it610.com/article/{'donotcache': str(int(time.time() * 1000)),'password': encrypted_password,'username': username,'twofactorcode': '','emailauth': '','loginfriendlyname': '','emailsteamid': '','rsatimestamp': rsa_key_dict['timestamp'],'remember_login': False,'tokentype': '-1'}print(data)response = session.post(url=login_url, data=https://www.it610.com/article/data, headers=headers)print(response.text)?def main():username = input('请输入登录账号: ')password = input('请输入登录密码: ')?# 获取 RSA 加密所需 key 等信息rsa_key_dict = get_rsa_key(username)# 获取加密后的密码encrypted_password = get_encrypted_password(password, rsa_key_dict)# print(encrypted_password)# 携带 用户名、加密后的密码、cookies、验证码等登录login(username, encrypted_password, rsa_key_dict)?if __name__ == '__main__':main()

【python爬虫实战steam加密逆向RSA登录解析】以上就是python爬虫实战steam加密逆向RSA登录解析的详细内容,更多关于爬虫steam加密逆向RSA登录的资料请关注脚本之家其它相关文章!

    来源:( 未知 )

    声明:本文是由网友投稿,文中所阐述的观点不代表本网的立场。



    本文网址【锐客网】http://www.readke.com/c/10142Y1352021.html

    原题:python爬虫实战steam加密逆向RSA登录解析


    上一篇:c语言|【C语言】scanf与回车的问题

    下一篇:@JsonSerialize不起作用的解决方案